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A P P R O X I M A T E  F O R M U L A S  

F O R  D E F L E C T I O N  OF C O M P R E S S E D  F L E X I B L E  B A R S  

N. S. As tapov  UDC 539.3 

The exact relationship between a load that compresses longitudinally a flexible elastic hinge-supported 
bar and the deflection was expressed by Euler in the form of a complete elliptic integral of the first kind [1-3]. 
The equilibrium postbuckling modes of compressed bars were first studied by Lagrange and investigated in 
great detail using the tables of elliptic integrals in [2]. Also, there is a great variety of approximate formulas 
expressing deflection via loading, but these are applicable from an engineering viewpoint only for loads that 
exceed a critical load by not more than 10%. 

In the present paper, an approximate formula is proposed which makes it possible to compute deflections 
on simple calculators with a relative error not greater than 3% up to loads that exceed a critical (Euler's load) 
by a factor of 3.5. It is shown that some small simplifications in the obtained formula yield a rougher formula 
which is more accurate than many of the well-known approximate formulas and allows a more compete 
qualitative description of load-deflection dependences for any loads. 

1. S t a t e m e n t  of t he  P r o b l e m .  Exac t  Solut ion.  We consider a flexible hinge-supported bar loaded 
by an axial compressive force P which preserves its magnitude and direction upon deformation of the bar.. 
We assume that the length L of the axial line of the bar is unchanged and the bar axis is bendable only in 
the plane. We consider the load-deflection dependence for an equilibrium configuration that branches from 
the unbuckled mode after the first critical load P, = EI(~r /L)  2 ( E I  is the bending stiffness of the bar). Note 
that the load-deflection dependence for higher equilibrium modes which correspond to the subsequent critical 
loads is obtained from the previous dependence by a simple transformation of the scale [4, 5]. Let us construct 
an approximate formula that allows us to calculate, with an error not greater than 3%, bar deflections under 
loads that are severalfold greater than the critical load. Let us compare with one another and with the exact 
solution the various available approximate formulas for bar deflections as a function of load. 

The exact dependenc, of bar deflection on longitudinal load is given in parametric form [2-5]: 

,~/2 2 

/ -  L = =  sin2 , (1.1) 

where the parameter 0 ~< k ~< 1 has the geometric sense of the sine of half the angle between the tangent to 
the bent bar axis at its vertex and the initial rectilinear direction of the bar; 1 ~< X is a dimensionless load 
parameter; and a and f < 1/2 are the maximum dimensional and dimensionless bar deflections, respectively. 

2. A p p r o x i m a t e  Formulas .  Approximate formulas are frequently [2-6] obtained from exact formulas 
(1.1) by expanding the complete elliptic integral of the first kind in a power series in the small parameter k: 

,r/2 

Another method of obtaining approximate formulas is that of using various approximations (linearizations) 
of the assumed nonlinear differential equation of the equilibrium of the bar's elastic line including those with 

Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 4, pp. 135-138, July- 
August, 1996. Original article submitted May 22, 1995. 

0021-8944/96/3704-0573 $15.00 Q 1997 Plenum Publishing Corporation 573 



TABLE 

Formula 
1.01 

load 

(1.1) 0.088974 
(2.2) 0.0900 
(2.3) 0.0899 
(2.4) 0.0895 
(2.5) 0.08896 

Deflection X 

f 

Formula 
1.01 load 

(2.6) 0.0896 
(2.7) 0.0895 
(2.8) 0.08898 
(2.9) 0.088974 
(2.10) 0.0891 

Deflection R 

I 

0.268 
0.2557 0.448 0.463 0.441 
0.2543 0.4019 0.389 0.301 
0.259 0.445 0.449 0.390 

refined boundary conditions taking into account the longitudinal shift of the base upon deflection of the bar 
[1, 7-10]. Using this method yon Mises [7, p. 436] derived the formula 

f = (2Vf2/~r)y~-  1, (2.2) 

which relates the dimensionless load A to the maximum dimensionless bar deflection f .  Formula (2.2) has 
been most widely used particularly after it was derived by various methods [3, 4, 8, 11, 12]. Note that  it was 
obtained in [3, p. 443; 4, p. 32] by approximating the solution by truncated series, i.e., by the first method, 
and in [11, p. 62] by the Koiter technique; a similar formula is given in [12, p. 245] despite inaccurate use of 
catastrophe theory [13]. The formula 

f = (2~/2/~r)v/X - 111 - (1/8)(A - 1)], (2.3). 

which is somewhat more exact than (2.2), is given in [1, p. 74]; it is obtained in [7 and 8, p. 37] just as 
(2.2), i.e., by the second method.  Using the first method (by means of series) Krylov [2, p. 501] obtained an 
approximate formula which can be written in our notation as 

f = (2v/2]~')V~ - 111 - (41/64)(X - 1)1. (2.4) 

Nikolai [3, p. 443] criticizes the yon Mises approximate analysis which was used to obtain formula (2.3) and 
to derive, by means of series, the formula 

f = (2,/'2~/Tr)x/~- 1[1 - (19/16)(X - 1)]. (2.5) 

Note that  (2.3)-(2.5) differ from one another only by the coefficient of X - 1 and hence, the graphs of these 
functions are qualitatively the same. As for (2.5), series were used in [5, p. 137] to construct the formulas 

f---- ( 2 V ~ / r ) r  - l /A; (2.6) 

f = (4 /7 r ) I~1  ~ - 1/A. (2.7) 

Formula (2.6) can also be obtained by the second method [9, p. 429] using refined boundary conditions that  
take into account the shift of the base. However, an a t tempt  [10, p. 489] to derive (2.7) by the second method 
was not successful: it resulted in a formula that  yields deflections about half as large as those obtained from 
the exact solution. Finally, in [6, p. 23] use was made of series to obtain the formula 

f = ( 4 v ~ / 3 ~ r v ~ ) i r  v / X -  8 - 1, (2.8) 

which is more exact than the formulas above, and from which, in the same paper, formula (2.7) was derived 
via simplification. 

The same method,  taking into account terms in expansion (2.1) up to k 6 inclusive, can be used to 
construct the formula 

f = (4/v/3~rA)r - 2 - 2. (2.9) 
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Assuming that  A -  1 << 1 and using the approximation 

~ / x / 6 A - 2 - 2  = v / 2 ~ / ~ / 1 + ( 3 / 2 ) ( A - 1 ) - I  ~ vr2r  + ( 3 / 4 ) ( A -  1 ) -  ( 9 /32 ) (A-  1) 2 - 1 

v/2~/C3/4)(A- 1 ) [1 -  ( 3 / 8 ) ( A -  1)1 ~ ~r~2 v/A " -  1, 

we write a simplified version of (2.9) in the form 

f = (2V~/~rA)vzX- 1. (2.10) 

3. C o m p a r i s o n  of  t h e  F o r m u l a s .  Conc lus ions .  Calculating the deflection by formulas (2.7)-(2.10), 
we obtain f --~ 0 for A --~ co, which corresponds to a mechanical sense, in contrast to f --* co for A ~ oo for 
(2.2), f ~ - o o  for (2.3)-(2.5), and f --~ 2v~/~r for (2.6). 

Table 1 presents deflection values f = a/L for a load A -- P/P., which are calculated by solution of 
system (1.1) with an assigned accuracy and in accordance with approximate formulas (2.2)-(2.10). From the 
exact solution it can be found that  the bar deflection reaches a maximum fm~x ~ 0.403 for a load A ~ 1.75, 
and the bar ends converge for A ~ 2.18, i.e., the bar forms a loop [2]. Deflections for these key load values of 
practical interest axe also given in Table 1. The empty spaces of Table 1 correspond to numbers that  do not 
have a physical meaning, for instance, f < 0 or f > 0.5. 

Figure 1 shows a graph of the exact load-deflection dependence (curve 1) and graphs constructed by 
formulas (2.2)-(2.10) to which correspond curves 2-10. The data in Table 1 and the graphs show co-vincingly 
formulas (2.2)-(2.7) to be applicable only to loads that  exceed the critical load by not more than 10% (A = 1.1). 
More exact formulas (2.8)-(2.10) were constructed by approximation of the exact solution [1-6] of the assumed 
nonlinear equation. But if this nonlinear equation is first replaced by an approximate (linearized) equation 
and is then solved exactly, rougher formulas (2.2) and (2.6) are obtained. In addition, it can be seen that 
(2.10) is mainly more exact than (2.8). 

Among approximate formulas (2.2)-(2.10) formula (2.9) is the most exact one; its maximum relative 
error for 1 ~ A ~ 4 equals ~ 3.8 % and is reached for A = 4. An increase in A increases the error of formula 
(2.9), but (2.9), (2.8) , and (2.10) adequately reflect qualitatively the load-deflection dependence for any loads. 
The maximum of function (2.9) is reached for A ~ 1.732 and is equal to 0.402, which differs only slightly from 
the exact value of f = 0.403 for A ~ 1.749. For (2.8) and (2.10) we have, respectively, f ~ 0.465 for A ,,~ 2.39 
and f ~ 0.45 for A = 2. 

Note that  formula (2.9) yields understated deflection values, while (2.10), overstated values. These 
formulas can be used for tentative rough estimates in more complicated problems in which bars are composite 
elements of a construction. Formulas (2.9) and (2.10) may also prove useful in instrument  making, for instance, 
in calculating mechanical regulators. 
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